Skip to main content 
 Contents  Index  Dark Mode  Prev  Up Next   \(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
              \DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Activity   5.4.4 . 
 
Evaluate each of the following indefinite integrals.
(a) 
\(\int x^2 \sin(x) \, dx\) 
 
(b) 
\(\int t^3 \ln(t) \, dt\) 
 
(c) 
\(\int e^z \sin(z) \, dz\) 
 
(d) 
\(\int s^2 e^{3s} \, ds\) 
 
(e) 
\(\int t \arctan(t) \,dt\)  (
Hint:  At a certain point in this problem, it is very helpful to note that 
\(\frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2}\text{.}\) )