Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
              \DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 5.3.3.
Evaluate each of the following indefinite integrals by using these steps:
- 
Find two functions within the integrand that form (up to a possible missing constant) a function-derivative pair; 
- 
Make a substitution and convert the integral to one involving  \(u\) and  \(du\text{;}\)
- 
Evaluate the new integral in  \(u\text{;}\)
- 
Convert the resulting function of  \(u\) back to a function of  \(x\) by using your earlier substitution; 
- 
Check your work by differentiating the function of  \(x\text{.}\) You should come up with the integrand originally given. 
 (a)
\(\int \frac{x^2}{5x^3+1} \, dx\)
 
(b)
\(\int e^x \sin(e^x) \, dx\)
 
(c)
\(\int \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx\)