Skip to main content 
 Contents  Index  Dark Mode  Prev  Up Next   \(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
              \DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Activity   4.2.2 . 
 
For each sum written in sigma notation, write the sum long-hand and evaluate the sum to find its value. For each sum written in expanded form, write the sum in sigma notation.
(a) 
\(\displaystyle \sum_{k=1}^{5} (k^2 + 2)\) 
 
(b) 
\(\displaystyle \sum_{i=3}^{6} (2i-1)\) 
 
(c) 
\(3 + 7 + 11 + 15 + \cdots + 27\) 
 
(d) 
\(4 + 8 + 16 + 32 + \cdots + 256\) 
 
(e) 
\(\displaystyle \sum_{i=1}^{6} \frac{1}{2^i}\)