Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 8.6.2.
Determine the interval of convergence of each power series.
(a)
\(\sum_{k=1}^{\infty} \frac{(x-1)^k}{3k}\)
(b)
\(\sum_{k=1}^{\infty} kx^k\)
(c)
\(\sum_{k=1}^{\infty} \frac{k^2(x+1)^k}{4^k}\)
(d)
\(\sum_{k=1}^{\infty} \frac{x^k}{(2k)!}\)
(e)
\(\sum_{k=1}^{\infty} k!x^k\)