Appendix B Answers to Activities
This appendix contains answers to all activities in the text. Answers for preview activities are not included.
1 Understanding the Derivative
1.1 How do we measure velocity?
1.1.2 Position and average velocity
1.1.3 Instantaneous Velocity
Activity 1.1.3.
1.1.3.a
1.1.3.b
1.1.3.c
1.1.3.d
Activity 1.1.4.
1.2 The notion of limit
1.2.2 The Notion of Limit
Activity 1.2.2.
1.2.2.a
1.2.2.b
1.2.2.c
1.2.3 Instantaneous Velocity
Activity 1.2.3.
1.2.3.a
1.2.3.b
1.2.3.c
Activity 1.2.4.
1.2.4.a
1.2.4.b
1.2.4.c
1.3 The derivative of a function at a point
1.3.2 The Derivative of a Function at a Point
Activity 1.3.2.
1.3.2.a
1.3.2.b
1.3.2.c
1.3.2.d
Activity 1.3.3.
1.3.3.a
1.3.3.b
1.3.3.c
1.3.3.d
Answer.
1.3.3.e
Activity 1.3.4.
1.3.4.a
Answer.
1.3.4.b
1.3.4.c
Answer.
1.3.4.d
1.3.4.e
1.3.4.f
1.4 The derivative function
1.4.2 How the derivative is itself a function
Activity 1.4.2.
Answer.
Activity 1.4.3.
1.4.3.a
1.4.3.b
1.4.3.c
1.4.3.d
1.4.3.e
1.4.3.f
1.5 Interpreting, estimating, and using the derivative
1.5.3 Toward more accurate derivative estimates
Activity 1.5.2.
1.5.2.a
1.5.2.b
1.5.2.c
1.5.2.d
Answer.
The value \(F(64) = 330.28\) is the temperature of the potato in degrees Fahrenheit at time 64, while \(F'(64) = 1.341\) measures the instantaneous rate of change of the potato’s temperature with respect to time at the instant \(t = 64\text{,}\) and its units are degrees per minute. Because at time \(t = 64\) the potato’s temperature is increasing at 1.341 degrees per minute, we expect that at \(t = 65\text{,}\) the temperature will be about 1.341 degrees greater than at \(t = 64\text{,}\) or in other words \(F(65) \approx 330.28 + 1.341 = 331.621\text{.}\) Similarly, at \(t = 66\text{,}\) two minutes have elapsed from \(t = 64\text{,}\) so we expect an increase of \(2 \cdot 1.341\) degrees: \(F(66) \approx 330.28 + 2 \cdot 1.341 = 332.962\text{.}\)
1.5.2.e
Answer.
Throughout the time interval \([0,90]\text{,}\) the temperature \(F\) of the potato is increasing. But as time goes on, the rate at which the temperature is rising appears to be decreasing. That is, while the values of \(F\) continue to get larger as time progresses, the values of \(F'\) are getting smaller (while still remaining positive). We thus might say that “the temperature of the potato is increasing, but at a decreasing rate.”
Activity 1.5.3.
1.5.3.a
1.5.3.b
1.5.3.c
1.5.3.d
1.5.3.e
Activity 1.5.4.
1.5.4.a
1.5.4.b
1.5.4.c
1.6 The second derivative
1.6.4 Concavity
Activity 1.6.2.
1.6.2.a
1.6.2.b
Answer.
Velocity is increasing on \(0\lt t\lt 1\text{,}\) \(3\lt t\lt 4\text{,}\) \(7\lt t\lt 8\text{,}\) and \(10\lt t\lt 11\text{;}\) \(y = v(t)\) is decreasing on \(1\lt t\lt 2\text{,}\) \(4\lt t\lt 5\text{,}\) \(8\lt t\lt 9\text{,}\) and \(11\lt t\lt 12\text{.}\) Velocity is constant on \(2\lt t\lt 3\text{,}\) \(5\lt t\lt 7\text{,}\) and \(9\lt t\lt 10\text{.}\)
1.6.2.c
1.6.2.d
1.6.2.e
Activity 1.6.3.
1.6.3.a
1.6.3.b
1.6.3.c
1.6.3.d
Activity 1.6.4.
Answer.
1.7 Limits, Continuity, and Differentiability
1.7.2 Having a limit at a point
Activity 1.7.2.
1.7.2.a
1.7.2.b
Answer.
\begin{equation*}
\lim_{x \to -2^-} f(x) = 2 \ \text{and} \lim_{x \to -2^+} f(x) = 1
\end{equation*}
\begin{equation*}
\lim_{x \to -1^-} f(x) = \frac{5}{3} \ \text{and} \lim_{x \to -1^+} f(x) = \frac{5}{3}
\end{equation*}
\begin{equation*}
\lim_{x \to 0^-} f(x) = \frac{7}{3} \ \text{and} \lim_{x \to 0^+} f(x) = \frac{7}{3}
\end{equation*}
\begin{equation*}
\lim_{x \to 1^-} f(x) = 3 \ \text{and} \lim_{x \to 1^+} f(x) = 3
\end{equation*}
\begin{equation*}
\lim_{x \to 2^-} f(x) = 2 \ \text{and} \lim_{x \to 2^+} f(x) = 2
\end{equation*}
1.7.2.c
1.7.2.d
1.7.2.e
Answer.
1.7.3 Being continuous at a point
Activity 1.7.3.
1.7.3.a
1.7.3.b
1.7.3.c
1.7.3.d
1.7.3.e
1.7.4 Being differentiable at a point
Activity 1.7.4.
1.7.4.a
1.7.4.b
1.7.4.c
1.7.4.d
1.7.4.e
1.8 The Tangent Line Approximation
1.8.3 The local linearization
Activity 1.8.2.
1.8.2.a
1.8.2.b
1.8.2.c
1.8.2.d
1.8.2.e
1.8.2.f
Activity 1.8.3.
1.8.3.a
1.8.3.b
1.8.3.c
1.8.3.d
1.8.3.e
1.8.3.f
2 Computing Derivatives
2.1 Elementary derivative rules
2.1.3 Constant, Power, and Exponential Functions
Activity 2.1.2.
2.1.2.a
2.1.2.b
2.1.2.c
2.1.2.d
2.1.2.e
2.1.2.f
2.1.2.g
2.1.4 Constant Multiples and Sums of Functions
Activity 2.1.3.
2.1.3.a
2.1.3.b
2.1.3.c
2.1.3.d
2.1.3.e
2.1.3.f
2.1.3.g
Activity 2.1.4.
2.1.4.a
2.1.4.b
2.1.4.c
2.1.4.d
2.2 The sine and cosine functions
2.2.2 The sine and cosine functions
Activity 2.2.2.
2.2.2.a
2.2.2.b
2.2.2.c
2.2.2.d
2.2.2.e
Activity 2.2.3.
2.2.3.a
2.2.3.b
2.2.3.c
2.2.3.d
2.2.3.e
Activity 2.2.4.
2.2.4.a
2.2.4.b
2.2.4.c
2.2.4.d
2.2.4.e
2.3 The product and quotient rules
2.3.2 The product rule
Activity 2.3.2.
2.3.2.a
2.3.2.b
2.3.2.c
2.3.2.d
2.3.3 The quotient rule
Activity 2.3.3.
2.3.3.a
2.3.3.b
2.3.3.c
2.3.3.d
2.3.4 Combining rules
Activity 2.3.4.
2.3.4.a
2.3.4.b
2.3.4.c
2.3.4.d
2.3.4.e
2.4 Derivatives of other trigonometric functions
2.4.2 Derivatives of the cotangent, secant, and cosecant functions
Activity 2.4.2.
2.4.2.a
2.4.2.b
2.4.2.c
2.4.2.d
Activity 2.4.3.
2.4.3.a
2.4.3.b
2.4.3.c
2.4.3.d
Activity 2.4.4.
2.4.4.a
2.4.4.b
2.4.4.c
2.4.4.d
2.4.4.e
2.5 The chain rule
2.5.2 The chain rule
Activity 2.5.2.
2.5.2.a
2.5.2.b
2.5.2.c
2.5.2.d
2.5.2.e
2.5.3 Using multiple rules simultaneously
Activity 2.5.3.
2.5.3.a
2.5.3.b
2.5.3.c
2.5.3.d
2.5.3.e
Activity 2.5.4.
2.5.4.a
2.5.4.b
2.5.4.c
2.5.4.d
2.6 Derivatives of Inverse Functions
2.6.3 The derivative of the natural logarithm function
Activity 2.6.2.
2.6.2.a
2.6.2.b
2.6.2.c
2.6.2.d
2.6.2.e
2.6.4 Inverse trigonometric functions and their derivatives
Activity 2.6.3.
2.6.3.a
2.6.3.b
2.6.3.c
2.6.3.d
2.6.3.e
2.6.3.f
Activity 2.6.4.
2.6.4.a
2.6.4.b
2.6.4.c
2.6.4.d
2.6.4.e
2.6.4.f
2.7 Derivatives of Functions Given Implicitly
2.7.2 Implicit Differentiation
Activity 2.7.4.
2.7.4.a
2.7.4.b
2.7.4.c
2.8 Using Derivatives to Evaluate Limits
2.8.2 Using derivatives to evaluate indeterminate limits of the form \(\frac{0}{0}\text{.}\)
Activity 2.8.2.
2.8.2.a
2.8.2.b
2.8.2.c
2.8.2.d
Activity 2.8.3.
2.8.3.a
2.8.3.b
2.8.3.c
2.8.3 Limits involving \(\infty\)
Activity 2.8.4.
2.8.4.a
2.8.4.b
2.8.4.c
2.8.4.d
2.8.4.e
3 Using Derivatives
3.1 Using derivatives to identify extreme values
3.1.2 Critical numbers and the first derivative test
Activity 3.1.2.
3.1.2.a
3.1.2.b
3.1.2.c
3.1.2.d
3.1.2.e
3.1.3 The second derivative test
Activity 3.1.3.
3.1.3.a
3.1.3.b
3.1.3.c
3.1.3.d
Activity 3.1.4.
3.1.4.a
3.1.4.b
Answer.
If \(\frac{2}{k^2} \gt 1\text{,}\) then the equation \(\cos(kx) = \frac{2}{k^2}\) has no solution. Hence, whenever \(k^2 \lt 2\text{,}\) or \(k \lt \sqrt{2} \approx 1.414\text{,}\) it follows that the equation \(\cos(kx) = \frac{2}{k^2}\) has no solutions \(x\text{,}\) which means that \(h''(x)\) is never zero (indeed, for these \(k\)-values, \(h''(x)\) is always positive so that \(h\) is always concave up). On the other hand, if \(k \ge \sqrt{2}\text{,}\) then \(\frac{2}{k^2} \le 1\text{,}\) which guarantees that \(\cos(kx) = \frac{2}{k^2}\) has infinitely many solutions, due to the periodicity of the cosine function. At each such point, \(h''(x) = 2 - k^2 \cos(kx)\) changes sign, and therefore \(h\) has infinitely many inflection points whenever \(k \ge \sqrt{2}\text{.}\)
3.1.4.c
Answer.
To see why \(h\) can only have a finite number of critical numbers regardless of the value of \(k\text{,}\) consider the equation
\begin{equation*}
0 = h'(x) = 2x - k\sin(kx)\text{,}
\end{equation*}
which implies that \(2x = k\sin(kx)\text{.}\) Since \(-1 \le \sin(kx) \le 1\text{,}\) we know that \(-k \le k\sin(kx) \le k\text{.}\) Once \(|x|\) is sufficiently large, we are guaranteed that \(|2x| \gt k\text{,}\) which means that for large \(x\text{,}\) \(2x\) and \(k\sin(kx)\) cannot intersect. Moreover, for relatively small values of \(x\text{,}\) the functions \(2x\) and \(k\sin(kx)\) can only intersect finitely many times since \(k\sin(kx)\) oscillates a finite number of times. This is why \(h\) can only have a finite number of critical numbers, regardless of the value of \(k\text{.}\)
3.2 Using derivatives to describe families of functions
3.2.2 Describing families of functions in terms of parameters
Activity 3.2.2.
3.2.2.a
3.2.2.b
3.2.2.c
3.2.2.d
Answer.
Activity 3.2.3.
3.2.3.a
3.2.3.b
3.2.3.c
3.2.3.d
3.2.3.e
Answer.
Activity 3.2.4.
3.2.4.a
3.2.4.b
3.2.4.c
3.2.4.d
3.2.4.e
Answer.
3.3 Global Optimization
3.3.2 Global Optimization
Activity 3.3.2.
3.3.2.a
3.3.2.b
Answer.
3.3.2.c
3.3.2.d
3.3.2.e
Activity 3.3.3.
3.3.3.a
3.3.3.b
3.3.3.c
3.3.3.d
3.3.3.e
3.3.3.f
3.3.3 Moving toward applications
Activity 3.3.4.
3.3.4.a
Answer.
3.3.4.b
3.3.4.c
3.3.4.d
3.3.4.e
3.3.4.f
3.4 Applied Optimization
3.4.2 More applied optimization problems
Activity 3.4.2.
3.4.2.a
3.4.2.b
3.4.2.c
3.4.2.d
Activity 3.4.3.
Activity 3.4.4.
Activity 3.4.5.
3.5 Related Rates
3.5.2 Related Rates Problems
Activity 3.5.2.
3.5.2.a
Answer.
3.5.2.b
3.5.2.c
3.5.2.d
3.5.2.e
3.5.2.f
Activity 3.5.3.
3.5.3.a
Answer.
3.5.3.b
3.5.3.c
3.5.3.d
3.5.3.e
Activity 3.5.4.
3.5.4.a
Answer.
3.5.4.b
3.5.4.c
3.5.4.d
3.5.4.e
3.5.4.f
Activity 3.5.5.
Answer.
Let \(x\) denote the position of the ball at time \(t\) and \(z\) the distance from the ball to first base, as pictured below.
\(\left. \frac{dz}{dt} \right|_{x = 45} = \frac{100}{\sqrt{5}} \approx 44.7214 \ \text{feet/sec} \text{.}\)
Let \(r\) be the runner’s position at time \(t\) and let \(s\) be the distance between the runner and the ball, as pictured.
\(\left. \frac{ds}{dt} \right|_{x = 45} = \frac{430}{\sqrt{17}} \approx 104.2903 \ \text{feet/sec} \text{.}\)
4 The Definite Integral
4.1 Determining distance traveled from velocity
4.1.2 Area under the graph of the velocity function
Activity 4.1.2.
4.1.2.a
4.1.2.b
4.1.2.c
4.1.2.d
4.1.3 Two approaches: area and antidifferentiation
Activity 4.1.3.
4.1.3.a
4.1.3.b
4.1.3.c
4.1.3.d
4.1.3.e
4.1.3.f
4.1.4 When velocity is negative
Activity 4.1.4.
4.1.4.a
4.1.4.b
4.1.4.c
4.1.4.d
4.2 Riemann Sums
4.2.2 Sigma Notation
Activity 4.2.2.
4.2.2.a
4.2.2.b
4.2.2.c
4.2.2.d
4.2.2.e
4.2.3 Riemann Sums
Activity 4.2.3.
4.2.3.a
Answer.
4.2.3.b
4.2.3.c
4.2.3.d
4.2.4 When the function is sometimes negative
Activity 4.2.4.
4.2.4.a
4.2.4.b
4.2.4.c
4.2.4.d
4.3 The Definite Integral
4.3.2 The definition of the definite integral
Activity 4.3.2.
4.3.2.a
4.3.2.b
4.3.2.c
4.3.2.d
4.3.3 Some properties of the definite integral
Activity 4.3.3.
4.3.3.a
4.3.3.b
4.3.3.c
4.3.3.d
4.3.3.e
4.3.4 How the definite integral is connected to a function’s average value
Activity 4.3.4.
4.3.4.a
4.3.4.b
4.3.4.c
4.3.4.d
4.3.4.e
4.3.4.f
4.4 The Fundamental Theorem of Calculus
4.4.2 The Fundamental Theorem of Calculus
Activity 4.4.2.
4.4.2.a
4.4.2.b
4.4.2.c
4.4.2.d
4.4.2.e
4.4.3 Basic antiderivatives
Activity 4.4.3.
4.4.3.a
4.4.3.b
4.4.3.c
4.4.4 The total change theorem
Activity 4.4.4.
4.4.4.a
4.4.4.b
4.4.4.c
4.4.4.d
5 Evaluating Integrals
5.1 Constructing Accurate Graphs of Antiderivatives
5.1.2 Constructing the graph of an antiderivative
Activity 5.1.2.
5.1.2.a
5.1.2.b
5.1.2.c
5.1.2.d
Answer.
\(F(1) = -\frac{1}{2}\text{;}\) \(F(2) = \frac{\pi}{4} - \frac{1}{2}\text{;}\) \(F(3) = \frac{\pi}{4} - 1\text{;}\) \(F(4) = \frac{\pi}{4}-2\text{;}\) \(F(5) = \frac{\pi}{4} - \frac{5}{2}\text{;}\) \(F(6) = \frac{\pi}{2} - \frac{5}{2}\text{;}\) \(F(7) = \frac{3\pi}{4} - \frac{5}{2}\text{;}\) \(F(8) = \frac{3\pi}{4} - \frac{5}{2}\text{;}\) and \(F(-1) = -1\text{.}\)
5.1.2.e
5.1.2.f
5.1.3 Multiple antiderivatives of a single function
Activity 5.1.3.
5.1.3.a
Answer.
5.1.3.b
5.1.3.c
Answer.
5.1.4 Functions defined by integrals
Activity 5.1.4.
5.1.4.a
5.1.4.b
5.1.4.c
5.1.4.d
5.1.4.e
5.1.4.f
5.2 The Second Fundamental Theorem of Calculus
5.2.2 The Second Fundamental Theorem of Calculus
Activity 5.2.2.
5.2.2.a
5.2.2.b
5.2.2.c
5.2.2.d
5.2.2.e
5.2.3 Understanding Integral Functions
Activity 5.2.3.
5.2.3.a
5.2.3.b
5.2.3.c
5.2.3.d
5.2.3.e
5.2.3.f
5.2.4 Differentiating an Integral Function
Activity 5.2.4.
5.2.4.a
5.2.4.b
5.2.4.c
5.2.4.d
5.2.4.e
5.3 Integration by Substitution
5.3.2 Reversing the Chain Rule: First Steps
Activity 5.3.2.
5.3.2.a
5.3.2.b
5.3.2.c
5.3.2.d
5.3.2.e
5.3.2.f
5.3.3 Reversing the Chain Rule: \(u\)-substitution
Activity 5.3.3.
5.3.3.a
5.3.3.b
5.3.3.c
5.3.4 Evaluating Definite Integrals via \(u\)-substitution
Activity 5.3.4.
5.3.4.a
5.3.4.b
5.3.4.c
5.4 Integration by Parts
5.4.2 Reversing the Product Rule: Integration by Parts
Activity 5.4.2.
5.4.2.a
5.4.2.b
5.4.2.c
5.4.2.d
5.4.3 Some Subtleties with Integration by Parts
Activity 5.4.3.
5.4.3.a
5.4.3.b
5.4.3.c
5.4.3.d
5.4.3.e
5.4.4 Using Integration by Parts Multiple Times
Activity 5.4.4.
5.4.4.a
5.4.4.b
5.4.4.c
5.4.4.d
5.4.4.e
5.5 Other Options for Finding Algebraic Antiderivatives
5.5.2 The Method of Partial Fractions
Activity 5.5.2.
5.5.2.a
5.5.2.b
5.5.2.c
5.5.3 Using an Integral Table
Activity 5.5.3.
5.5.3.a
5.5.3.b
5.5.3.c
5.5.3.d
5.6 Numerical Integration
5.6.2 The Trapezoid Rule
Activity 5.6.2.
5.6.2.a
5.6.2.b
5.6.2.c
5.6.2.d
5.6.2.e
5.6.4 Simpson’s Rule
Activity 5.6.3.
5.6.3.a
5.6.3.b
5.6.3.c
5.6.3.d
5.6.3.e
5.6.3.f
5.6.5 Overall observations regarding \(L_n\text{,}\) \(R_n\text{,}\) \(T_n\text{,}\) \(M_n\text{,}\) and \(S_{2n}\text{.}\)
Activity 5.6.4.
5.6.4.a
5.6.4.b
5.6.4.c
5.6.4.d
5.6.4.e
6 Using Definite Integrals
6.1 Using Definite Integrals to Find Area and Length
6.1.2 The Area Between Two Curves
Activity 6.1.2.
6.1.2.a
6.1.2.b
6.1.2.c
6.1.2.d
Answer.
The left-hand region has area
\begin{equation*}
A_1 = \int_{\frac{1 - \sqrt{5}}{2}}^0 \left( \left(x^3 - x \right) - x^2\right) dx = \dfrac{13 - 5\sqrt{5}}{24} \approx 0.075819\text{.}
\end{equation*}
The right-hand region has area
\begin{equation*}
A_2 = \int_0^{\frac{1 + \sqrt{5}}{2}} \left( x^2 - \left(x^3 - x \right) \right) dx = \dfrac{13 + 5\sqrt{5}}{24} \approx 1.007514 \text{.}
\end{equation*}
6.1.3 Finding Area with Horizontal Slices
Activity 6.1.3.
6.1.3.a
6.1.3.b
6.1.3.c
6.1.3.d
6.1.4 Finding the length of a curve
Activity 6.1.4.
6.1.4.a
6.1.4.b
6.1.4.c
6.1.4.d
6.1.4.e
6.2 Using Definite Integrals to Find Volume
6.2.2 The Volume of a Solid of Revolution
Activity 6.2.2.
6.2.2.a
6.2.2.b
6.2.2.c
6.2.2.d
6.2.2.e
6.2.3 Revolving about the \(y\)-axis
Activity 6.2.3.
6.2.3.a
6.2.3.b
6.2.3.c
6.2.3.d
6.2.3.e
6.2.4 Revolving about horizontal and vertical lines other than the coordinate axes
Activity 6.2.4.
6.2.4.a
6.2.4.b
6.2.4.c
6.2.4.d
6.3 Density, Mass, and Center of Mass
6.3.2 Density
Activity 6.3.2.
6.3.2.a
6.3.2.b
Answer.
-
\(V = \int_{0}^{5} \pi (4 - \frac{4}{5}x)^2 \, dx = \frac{80\pi}{3} \approx 83.7758 \mbox{m}^3\text{.}\)
-
\(M = \frac{64000\pi}{3} \approx 67020.6433 \mbox{kg} \text{.}\)
-
\(\displaystyle M = \int_{0}^{5} (400 + \frac{200}{1+x^2}) \cdot \pi (4-\frac{4}{5}x)^2 \, dx = 128 \pi (\frac{265}{3} + 24 \arctan(5) - 5 \ln(26)) \approx 42224.8024 \mbox{kg}\)
6.3.2.c
6.3.3 Weighted Averages
Activity 6.3.3.
6.3.3.a
6.3.3.b
6.3.3.c
6.3.3.d
6.3.3.e
6.3.3.f
6.3.3.g
6.3.3.h
Answer.
If we have an existing arrangement and balancing point, moving one of the locations to the left will move the balancing point to the left; similarly, moving one of the locations to the right will move the balancing point to the right. If instead we add weight to an existing location, if that location is left of the balancing point, the balancing point will move left; the behavior is similar if on the right.
6.3.4 Center of Mass
Activity 6.3.4.
6.3.4.a
6.3.4.b
6.3.4.c
6.3.4.d
6.3.4.e
6.3.4.f
6.4 Physics Applications: Work, Force, and Pressure
6.4.2 Work
Activity 6.4.2.
6.4.2.a
6.4.2.b
6.4.2.c
6.4.2.d
6.4.3 Work: Pumping Liquid from a Tank
Activity 6.4.3.
6.4.3.a
6.4.3.b
6.4.3.c
6.4.4 Force due to Hydrostatic Pressure
Activity 6.4.4.
6.4.4.a
6.4.4.b
6.4.4.c
6.5 Improper Integrals
6.5.2 Improper Integrals Involving Unbounded Intervals
Activity 6.5.2.
6.5.2.a
Answer.
6.5.2.b
Answer.
-
\(\int_1^{10} \frac{1}{x^{3/2}} dx = 2 - \frac{2}{\sqrt{10}}\) \(\int_1^{1000} \frac{1}{x^{3/2}} dx = 2 - \frac{2}{\sqrt{1000}}\) \(\int_1^{100000} \frac{1}{x^{3/2}} dx = 2 - \frac{2}{\sqrt{100000}}\)
-
\(\int_1^b \frac{1}{x^{3/2}} dx = 2 - \frac{2}{\sqrt{b}}\text{.}\)
-
\(\displaystyle \lim_{b \to \infty} \int_1^b \frac{1}{x^{3/2}} dx = \lim_{b \to \infty} \left( 2 - \frac{2}{\sqrt{b}} \right) = 2\)
6.5.2.c
6.5.2.d
6.5.3 Convergence and Divergence
Activity 6.5.3.
6.5.3.a
6.5.3.b
6.5.3.c
6.5.3.d
6.5.3.e
6.5.3.f
6.5.4 Improper Integrals Involving Unbounded Integrands
Activity 6.5.4.
6.5.4.a
6.5.4.b
6.5.4.c
6.5.4.d
6.5.4.e
6.5.4.f
7 Differential Equations
7.1 An Introduction to Differential Equations
7.1.2 What is a differential equation?
Activity 7.1.2.
7.1.2.a
7.1.2.b
7.1.2.c
7.1.2.d
7.1.2.e
7.1.3 Differential equations in the world around us
Activity 7.1.3.
7.1.3.a
Answer.
For the skydiver:
\begin{align*}
\left. \frac{dv}{dt}\right|_{(v = 0.5)} \amp \approx 1.5 \amp \left. \frac{dv}{dt}\right|_{(v = 1)} \amp \approx 1.2 \amp \left. \frac{dv}{dt}\right|_{(v = 1.5 )} \amp \approx 0.9\\
\left. \frac{dv}{dt}\right|_{(v = 2)} \amp \approx 0.6 \amp \left. \frac{dv}{dt}\right|_{(v = 2.5)} \amp \approx 0.3
\end{align*}
7.1.3.b
Answer.
For the meteorite:
\begin{align*}
\left. \frac{dv}{dt}\right|_{(v = 3.5)} \amp \approx -0.3 \amp \left. \frac{dv}{dt}\right|_{(v = 4)} \amp \approx -0.6\\
\left. \frac{dv}{dt}\right|_{(v = 4.5)} \amp \approx -0.9 \amp \left. \frac{dv}{dt}\right|_{(v = 5)} \amp \approx -1.2
\end{align*}
A graph of the points from parts (a) and (b) is shown in the following diagram:
7.1.3.c
7.1.3.d
7.1.3.e
7.1.3.f
7.1.3.g
7.1.4 Solving a differential equation
Activity 7.1.4.
7.1.4.a
7.1.4.b
7.1.4.c
7.1.4.d
7.2 Qualitative behavior of solutions to DEs
7.2.2 Slope fields
Activity 7.2.2.
7.2.2.a
7.2.2.b
Answer.
7.2.2.c
Answer.
7.2.2.d
7.2.2.e
7.2.3 Equilibrium solutions and stability
Activity 7.2.3.
7.2.3.a
7.2.3.b
7.2.3.c
Answer.
7.2.3.d
Answer.
7.2.3.e
7.2.3.f
7.2.3.g
7.3 Euler’s method
7.3.2 Euler’s Method
Activity 7.3.2.
7.3.2.a
Answer.
\(t_i\) | \(y_i\) | \(dy/dt\) | \(\Delta y\) |
\(0\) | \(0\) | \(-1\) | \(-0.2\) |
\(0.2\) | \(-0.2\) | \(-0.6\) | \(-0.12\) |
\(0.4\) | \(-0.32\) | \(-0.2\) | \(-0.04\) |
\(0.6\) | \(-0.36\) | \(0.2\) | \(0.04\) |
\(0.8\) | \(-0.32\) | \(0.6\) | \(0.12\) |
\(1.0\) | \(-0.2\) | \(1\) | \(0.2\) |
7.3.2.b
7.3.2.c
Answer.
If we first think about how \(y_1\) is generated for the initial value problem \(\frac{dy}{dt} = f(t) = 2t-1, \ y(0) = 0\text{,}\) we see that \(y_1 = y_0 + \Delta t \cdot f(t_0)\text{.}\) Since \(y_0 = 0\text{,}\) we have \(y_1 = \Delta t \cdot f(t_0)\text{.}\) From there, we know that \(y_2\) is given by \(y_2 = y_1 + \Delta t f(t_1)\text{.}\) Substituting our earlier result for \(y_1\text{,}\) we see that \(y_2 = \Delta t \cdot f(t_0) + \Delta t f(t_1)\text{.}\) Continuing this process up to \(y_5\text{,}\) we get
\begin{equation*}
y_5 = \Delta t \cdot f(t_0) + \Delta t f(t_1) + \Delta t f(t_2) + \Delta t f(t_3) + \Delta t f(t_4)
\end{equation*}
This is precisely the left Riemann sum with five subintervals for the definite integral \(\int_0^1 (2t-1)~dt\text{.}\)
7.3.2.d
Activity 7.3.3.
7.3.3.a
Answer.
7.3.3.b
7.3.3.c
7.3.3.d
Answer.
\(t_i\) | \(y_i\) | \(dy/dt\) | \(\Delta y\) |
\(0.0\) | \(1.0000\) | \(5.0000\) | \(1.0000\) |
\(0.2\) | \(2.0000\) | \(8.0000\) | \(1.6000\) |
\(0.4\) | \(3.6000\) | \(8.6400\) | \(1.7280\) |
\(0.6\) | \(5.3280\) | \(3.5804\) | \(0.7161\) |
\(0.8\) | \(6.0441\) | \(-0.2664\) | \(-0.0533\) |
\(1.0\) | \(5.9908\) | \(0.0551\) | \(0.0110\) |
7.3.3.e
7.4 Separable differential equations
7.4.2 Solving separable differential equations
Activity 7.4.2.
7.4.2.a
7.4.2.b
7.4.2.c
7.4.2.d
7.4.2.e
Activity 7.4.3.
7.4.3.a
7.4.3.b
7.4.3.c
7.4.3.d
7.4.3.e
Activity 7.4.4.
7.4.4.a
7.4.4.b
7.4.4.c
7.4.4.d
7.4.4.e
7.5 Modeling with differential equations
7.5.2 Developing a differential equation
Activity 7.5.2.
7.5.2.a
7.5.2.b
7.5.2.c
7.5.2.d
7.5.2.e
7.5.2.f
Activity 7.5.3.
7.5.3.a
7.5.3.b
7.5.3.c
7.5.3.d
7.5.3.e
7.5.3.f
7.6 Population Growth and the Logistic Equation
7.6.2 The earth’s population
Activity 7.6.2.
7.6.2.a
7.6.2.b
7.6.2.c
7.6.2.d
7.6.2.e
7.6.2.f
7.6.2.g
7.6.3 Solving the logistic differential equation
Activity 7.6.3.
7.6.3.a
7.6.3.b
7.6.3.c
7.6.3.d
7.6.3.e
8 Sequences and Series
8.1 Sequences
8.1.2 Sequences
Activity 8.1.2.
8.1.2.a
8.1.2.b
8.1.2.c
Activity 8.1.3.
8.1.3.a
Answer.
8.1.3.b
Answer.
8.1.3.c
Answer.
Activity 8.1.4.
8.1.4.a
8.1.4.b
8.1.4.c
8.2 Geometric Series
8.2.2 Geometric Series
Activity 8.2.2.
8.2.2.a
8.2.2.b
8.2.2.c
Activity 8.2.3.
8.2.3.a
8.2.3.b
8.2.3.c
Answer.
Since
\begin{equation*}
S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} a\frac{1-r^n}{1-r}
\end{equation*}
and
\begin{equation*}
\lim_{n \to \infty} r^n = 0
\end{equation*}
for \(0 \lt r \lt 1\text{,}\) we conclude that
\begin{equation*}
S = \lim_{n \to \infty} a\frac{1-r^n}{1-r} = \frac{a}{1-r}
\end{equation*}
when \(0 \lt r \lt 1\text{.}\)
Activity 8.2.4.
8.2.4.a
8.2.4.b
8.2.4.c
8.3 Series of Real Numbers
8.3.2 Infinite Series
Activity 8.3.2.
8.3.2.a
8.3.2.b
8.3.2.c
Answer.
-
\(\displaystyle \displaystyle\sum_{k=1}^{1} \frac{1}{k^2}=1\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{2} \frac{1}{k^2}=1.25\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{3} \frac{1}{k^2}=1.361111111\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{4} \frac{1}{k^2}=1.423611111\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{5} \frac{1}{k^2}=1.463611111\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{6} \frac{1}{k^2}=1.491388889\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{7} \frac{1}{k^2}=1.511797052\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{8} \frac{1}{k^2}=1.527422052\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{9} \frac{1}{k^2}=1.539767731\)
-
\(\displaystyle \displaystyle\sum_{k=1}^{10} \frac{1}{k^2} =1.549767731 \phantom{1.54976773}\)
8.3.2.d
8.3.3 The Divergence Test
Activity 8.3.3.
8.3.3.a
8.3.3.b
8.3.3.c
8.3.3.d
8.3.3.e
Activity 8.3.4.
8.3.4.a
8.3.4.b
8.3.4.c
8.3.4 The Integral Test
Activity 8.3.5.
8.3.5.a
8.3.5.b
8.3.5.c
8.3.5.d
8.3.5.e
Activity 8.3.6.
8.3.6.a
8.3.6.b
8.3.6.c
8.3.6.d
8.3.5 The Limit Comparison Test
Activity 8.3.7.
8.3.7.a
8.3.7.b
8.3.7.c
Activity 8.3.8.
8.3.6 The Ratio Test
Activity 8.3.9.
8.3.9.a
Answer.
\(k\) | \(\dfrac{a_{k+1}}{a_k}\) |
\(5\) | 0.6583679115 |
\(10\) | 0.6665951585 |
\(20\) | 0.6666666642 |
\(21\) | 0.6666666658 |
\(22\) | 0.6666666664 |
\(23\) | 0.6666666666 |
\(24\) | 0.6666666666 |
\(25\) | 0.6666666667 |
8.3.9.b
8.3.9.c
Activity 8.3.10.
8.3.10.a
8.3.10.b
8.3.10.c
8.3.10.d
8.4 Alternating Series
8.4.2 The Alternating Series Test
Activity 8.4.2.
8.4.2.a
Answer.
\(\sum_{k=1}^{1} (-1)^{k+1}\frac{1}{k}\) | \(1\) | \(\sum_{k=1}^{6} (-1)^{k+1}\frac{1}{k}\) | \(0.6166666667\) |
\(\sum_{k=1}^{2} (-1)^{k+1}\frac{1}{k}\) | \(0.5\) | \(\sum_{k=1}^{7} (-1)^{k+1}\frac{1}{k}\) | \(0.7595238095\) |
\(\sum_{k=1}^{3} (-1)^{k+1}\frac{1}{k}\) | \(0.8333333333\) | \(\sum_{k=1}^{8} (-1)^{k+1}\frac{1}{k}\) | \(0.6345238095\) |
\(\sum_{k=1}^{4} (-1)^{k+1}\frac{1}{k}\) | \(0.5833333333\) | \(\sum_{k=1}^{9} (-1)^{k+1}\frac{1}{k}\) | \(0.7456349206\) |
\(\sum_{k=1}^{5} (-1)^{k+1}\frac{1}{k}\) | \(0.7833333333\) | \(\sum_{k=1}^{10} (-1)^{k+1}\frac{1}{k}\) | \(0.6456349206\) |
8.4.2.b
Activity 8.4.3.
8.4.3.a
8.4.3.b
8.4.3.c
8.4.3 Estimating Alternating Sums
Activity 8.4.4.
8.4.4 Absolute and Conditional Convergence
Activity 8.4.5.
8.4.5.a
8.4.5.b
8.4.5.c
Activity 8.4.6.
8.4.6.a
8.4.5 Summary of Tests for Convergence of Series
Activity 8.4.7.
8.4.7.a
8.4.7.b
8.4.7.c
8.4.7.d
8.4.7.e
8.4.7.f
8.4.7.g
8.4.7.h
8.4.7.i
8.4.7.j
8.4.7.k
8.5 Taylor Polynomials and Taylor Series
8.5.2 Taylor Polynomials
Activity 8.5.2.
8.5.2.a
8.5.2.b
Answer.
-
\(f^{(k)}(0) = 0 \text{ if } k \text{ is odd, and } f^{(2k)}(0) = (-1)^k \text{.}\)
-
\(P_n(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^{n/2}\frac{x^n}{n!}\) if \(n\) is even and \(P_n(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^{(n-1)/2}\frac{x^(n-1)}{(n-1)!}\) if \(n\) is odd.
8.5.2.c
Answer.
-
\(f^{(k)}(0) = 0 \text{ if } k \text{ is even } \ \ \ \text{ and } \ \ \ f^{(2k+1)}(0) = (-1)^k \text{.}\)
-
\(P_n(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^{(n-1)/2}\frac{x^n}{n!}\) if \(n\) is odd and \(P_n(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^{n/2+1}\frac{x^{n-1}}{(n-1)!}\) if \(n\) is even.
8.5.3 Taylor Series
Activity 8.5.3.
8.5.3.a
8.5.3.b
8.5.3.c
8.5.3.d
Activity 8.5.4.
8.5.4.a
8.5.4.b
8.5.4.c
8.5.4 The Interval of Convergence of a Taylor Series
Activity 8.5.5.
8.5.5.a
8.5.5.b
8.5.5.c
8.5.5 Error Approximations for Taylor Polynomials
Activity 8.5.6.
Activity 8.5.7.
8.5.7.a
Answer.
Compare Example 8.5.6.