So far, we’ve considered series with exclusively nonnegative terms. Next, we consider series that have some negative terms. For instance, the geometric series
Preview Activity 8.3.1 showed how we can approximate the number \(e\) with linear, quadratic, and other polynomial approximations. We use a similar approach in this activity to obtain linear and quadratic approximations to \(\ln(2)\text{.}\) Along the way, we encounter a type of series that is different than most of the ones we have seen so far. Throughout this activity, let \(f(x) = \ln(1+x)\text{.}\)
Find the tangent line to \(f\) at \(x=0\) and use this linearization to approximate \(\ln(2)\text{.}\) That is, find \(L(x)\text{,}\) the tangent line approximation to \(f(x)\text{,}\) and use the fact that \(L(1) \approx f(1)\) to estimate \(\ln(2)\text{.}\)
The linearization of \(\ln(1+x)\) does not provide a very good approximation to \(\ln(2)\) since \(1\) is not that close to \(0\text{.}\) To obtain a better approximation, we alter our approach; instead of using a straight line to approximate \(\ln(2)\text{,}\) we use a quadratic function to account for the concavity of \(\ln(1+x)\) for \(x\) close to \(0\text{.}\) With the linearization, both the function’s value and slope agree with the linearization’s value and slope at \(x=0\text{.}\) We will now make a quadratic approximation \(P_2(x)\) to \(f(x) = \ln(1+x)\) centered at \(x=0\) with the property that \(P_2(0) = f(0)\text{,}\)\(P'_2(0) = f'(0)\text{,}\) and \(P''_2(0) = f''(0)\text{.}\) Let \(P_2(x) = x - \frac{x^2}{2}\text{.}\) Show that \(P_2(0) = f(0)\text{,}\)\(P'_2(0) = f'(0)\text{,}\) and \(P''_2(0) = f''(0)\text{.}\) Use \(P_2(x)\) to approximate \(\ln(2)\) by using the fact that \(P_2(1) \approx f(1)\text{.}\)
We can continue approximating \(\ln(2)\) with polynomials of larger degree whose derivatives agree with those of \(f\) at \(0\text{.}\) This makes the polynomials fit the graph of \(f\) better for more values of \(x\) around \(0\text{.}\) For example, let \(P_3(x) = x - \frac{x^2}{2}+\frac{x^3}{3}\text{.}\) Show that \(P_3(0) = f(0)\text{,}\)\(P'_3(0) = f'(0)\text{,}\)\(P''_3(0) = f''(0)\text{,}\) and \(P'''_3(0) = f'''(0)\text{.}\) Taking a similar approach to preceding questions, use \(P_3(x)\) to approximate \(\ln(2)\text{.}\)
If we used a degree \(4\) or degree \(5\) polynomial to approximate \(\ln(1+x)\text{,}\) what approximations of \(\ln(2)\) do you think would result? Use the preceding questions to conjecture a pattern that holds, and state the degree \(4\) and degree \(5\) approximation.
Preview Activity 8.4.1 gives us several approximations to \(\ln(2)\text{.}\) The linear approximation is \(1\text{,}\) and the quadratic approximation is \(1 - \frac{1}{2} = \frac{1}{2}\text{.}\) If we continue this process, cubic, quartic (degree \(4\)), quintic (degree \(5\)), and higher degree polynomials give us the approximations to \(\ln(2)\) in Table 8.4.1.
Using computational technology, we find that the sum of the first 100 terms in this series is 0.6881721793. As a comparison, \(\ln(2) \approx 0.6931471806\text{.}\) This shows that even though the series (8.4.1) converges to \(\ln(2)\text{,}\) it must do so quite slowly, since the sum of the first 100 terms isn’t particularly close to \(\ln(2)\text{.}\) We will investigate the issue of how quickly an alternating series converges later in this section.
whose index starts at \(k = 1\text{,}\) is also alternating. As we will soon see, there are several very nice results that hold for alternating series, while alternating series can also demonstrate some unusual behavior.
It is important to remember that most of the series tests we have seen in previous sections apply only to series with nonnegative terms. Alternating series require a different test.
Activity 8.4.2 illustrates the general behavior of any convergent alternating series. We see that the partial sums of the alternating harmonic series oscillate around a fixed number that turns out to be the sum of the series.
Recall that if \(\lim_{k \to \infty} a_k \neq 0\text{,}\) then the series \(\sum a_k\) diverges by the Divergence Test. From this point forward, we will thus only consider alternating series
Because the sequence \(\{a_n\}\) converges to \(0\text{,}\) the distance between successive partial sums becomes as close to zero as we’d like, and thus the sequence of partial sums converges (even though we don’t know the exact value to which it converges).
Given an alternating series \(\sum (-1)^k a_k
\text{,}\) if the sequence \(\{a_k\}\) of positive terms decreases to 0 as \(k \to \infty\text{,}\) then the alternating series converges.
If the series converges, the argument for the Alternating Series Test also provides us with a method to determine how close the \(n\)th partial sum \(S_n\) is to the actual sum of the series. To see how this works, let \(S\) be the sum of a convergent alternating series, so
\begin{equation*}
S = \sum_{k=1}^{\infty} (-1)^k a_k\text{.}
\end{equation*}
Therefore, the value of the term \(a_{n+1}\) provides an error estimate for how well the partial sum \(S_n\) approximates the actual sum \(S\text{.}\) We summarize this fact in the statement of the Alternating Series Estimation Theorem.
If the alternating series \(\sum_{k=1}^{\infty} (-1)^{k+1}a_k\) has positive terms \(a_k\) that decrease to zero as \(k \to \infty\text{,}\) and \(S_n = \sum_{k=1}^{n} (-1)^{k+1}a_k\) is the \(n\)th partial sum of the alternating series, then
whose terms are neither all nonnegative nor alternating is different from any series that we have considered so far. The behavior of such a series can be rather complicated, but there is an important connection between a series with some negative terms and series with all positive terms.
As the example in Activity 8.4.5 suggests, if a series \(\sum a_k\) has some negative terms but \(\sum |a_k|\) converges, then the original series, \(\sum a_k\text{,}\) must also converge. That is, if \(\sum | a_k |\) converges, then so must \(\sum a_k\text{.}\)
As we just observed, this is the case for the series (8.4.2), because the corresponding series of the absolute values of its terms is the convergent \(p\)-series \(\sum \frac{1}{k^2}\text{.}\) But there are series, such as the alternating harmonic series \(\sum (-1)^{k+1} \frac{1}{k}\text{,}\) that converge while the corresponding series of absolute values, \(\sum \frac{1}{k}\text{,}\) diverges. We distinguish between these behaviors by introducing the following language.
Does this series converge absolutely? Hint: Use the fact that \(\ln(k) \lt \sqrt{k}\) for large values of \(k\) and then compare to an appropriate \(p\)-series.
Conditionally convergent series turn out to be very interesting. If the sequence \(\{a_n\}\) decreases to 0, but the series \(\sum a_k\) diverges, the conditionally convergent series \(\sum (-1)^k a_k\) is right on the borderline of being a divergent series. As a result, any conditionally convergent series converges very slowly. Furthermore, some very strange things can happen with conditionally convergent series, as illustrated in some of the exercises.
Subsection8.4.5Summary of Tests for Convergence of Series
We have discussed several tests for convergence/divergence of series in our sections and in exercises. We close this section of the text with a summary of all the tests we have encountered, followed by an activity that challenges you to decide which convergence test to apply to several different series.
Easier to apply in general than the comparison test, but you must have a series with known behavior to compare. Useful to apply to series of rational functions.
In general, the Ratio Test can usually be used in place of the Root Test. However, the Root Test can be quick to use when \(a_k\) involves \(k\)th powers.
If \(a_n\) is a positive, decreasing sequence so that \(\displaystyle \lim_{n \to \infty} a_n = 0\text{,}\) then the alternating series \(\sum (-1)^{k+1} a_k\) converges.
Let \(S_n = \displaystyle \sum_{k=1}^n (-1)^{k+1} a_k\) be the \(n\)th partial sum of the alternating series \(\displaystyle \sum_{k=1}^{\infty} (-1)^{k+1} a_k\text{.}\) Assume \(a_n \gt 0\) for each positive integer \(n\text{,}\) the sequence \(a_n\) decreases to 0 and \(\displaystyle \lim_{n \to \infty} S_n = S\text{.}\) Then it follows that \(|S - S_n| \lt a_{n+1}\text{.}\)
For (a)-(j), use appropriate tests to determine the convergence or divergence of the following series. Throughout, if a series is a convergent geometric series, find its sum.
Determine a value of \(n\) so that the \(n\)th partial sum \(S_n\) of the alternating series \(\displaystyle\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}\) approximates the sum to within 0.001.
The sequence of partial sums of a convergent alternating series oscillates around the sum of the series if the sequence of \(n\)th terms converges to 0. That is why the Alternating Series Test shows that the alternating series \(\sum_{k=1}^{\infty} (-1)^ka_k\) converges whenever the sequence \(\{a_n\}\) of \(n\)th terms decreases to 0.
The difference between the \(n-1\)st partial sum \(S_{n-1}\) and the \(n\)th partial sum \(S_n\) of a convergent alternating series \(\sum_{k=1}^{\infty} (-1)^ka_k\) is \(|S_n - S_{n-1}| = a_n\text{.}\) Since the partial sums oscillate around the sum \(S\) of the series, it follows that
So the \(n\)th partial sum of a convergent alternating series \(\sum_{k=1}^{\infty} (-1)^ka_k\) approximates the actual sum of the series to within \(a_n\text{.}\)
how many terms do you have to compute in order for your approximation (your partial sum) to be within 0.0000001 from the convergent value of that series?
Let \(S_n\) be the \(n\)th partial sum of the series in (8.4.3). Calculate the error in approximating \(\frac{\pi}{4}\) with \(S_{100}\) and explain why this is not a very good approximation.
Determine the number of terms it would take in the series (8.4.3) to approximate \(\frac{\pi}{4}\) to 10 decimal places. (The fact that it takes such a large number of terms to obtain even a modest degree of accuracy is why we say that conditionally convergent series converge very slowly.)
We have shown that if \(\sum (-1)^{k+1} a_k\) is a convergent alternating series, then the sum \(S\) of the series lies between any two consecutive partial sums \(S_n\text{.}\) This suggests that the average \(\frac{S_n+S_{n+1}}{2}\) is a better approximation to \(S\) than is \(S_n\text{.}\)
Show that \(\frac{S_n+S_{n+1}}{2} = S_n + \frac{1}{2}(-1)^{n+2} a_{n+1}\text{.}\)
Conditionally convergent series exhibit interesting and unexpected behavior. In this exercise we examine the conditionally convergent alternating harmonic series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}\) and discover that addition is not commutative for conditionally convergent series. We will also encounter Riemann’s Theorem concerning rearrangements of conditionally convergent series. Before we begin, we remind ourselves that
Based on the results of the previous parts of this exercise, what can we say about the sums \(\sum_{k=C}^{\infty} \frac{1}{2k}\) and \(\sum_{k=C}^{\infty} \frac{1}{2k+1}\) for any positive integer \(C\text{?}\) Be specific in your explanation.
Recall addition of real numbers is commutative; that is
\begin{equation*}
a + b = b + a
\end{equation*}
for any real numbers \(a\) and \(b\text{.}\) This property is valid for any sum of finitely many terms, but does this property extend when we add infinitely many terms together?
The answer is no, and something even more odd happens. Riemann’s Theorem (after the nineteenth-century mathematician Georg Friedrich Bernhard Riemann) states that a conditionally convergent series can be rearranged to converge to any prescribed sum. More specifically, this means that if we choose any real number \(S\text{,}\) we can rearrange the terms of the alternating harmonic series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}\) so that the sum is \(S\text{.}\) To understand how Riemann’s Theorem works, let’s assume for the moment that the number \(S\) we want our rearrangement to converge to is positive. Our job is to find a way to order the sum of terms of the alternating harmonic series to converge to \(S\text{.}\)
Explain why we can continue this process indefinitely and find a sequence \(\{S_n\}\) whose terms are partial sums of a rearrangement of the terms in the alternating harmonic series so that \(\lim_{n \to \infty} S_n = S\text{.}\)