Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 8.4.6 .
(a)
Consider the series \(\sum (-1)^k \frac{\ln(k)}{k}\text{.}\)
Does this series converge? Explain.
Does this series converge absolutely? Explain what test you use to determine your answer.
(b)
Consider the series \(\sum (-1)^k \frac{\ln(k)}{k^2}\text{.}\)
Does this series converge? Explain.
Does this series converge absolutely? Hint: Use the fact that
\(\ln(k) \lt \sqrt{k}\) for large values of
\(k\) and then compare to an appropriate
\(p\) -series.