Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 8.2.2.
Let \(a\) and \(r\) be real numbers (with \(r \ne 1\)) and let
\begin{equation*}
S_n = a+ar+ar^2 + \cdots + ar^{n-1}\text{.}
\end{equation*}
In this activity we will find a shortcut formula for
\(S_n\) that does not involve a sum of
\(n\) terms.
(a)
Multiply
\(S_n\) by
\(r\text{.}\) What does the resulting sum look like?
(b)
Subtract \(rS_n\) from \(S_n\) and explain why
\begin{equation*}
S_n - rS_n = a - ar^n\text{.}
\end{equation*}
(c)
Solve the equation given in the previous step for
\(S_n\) to find a simple formula for
\(S_n\) that does not involve adding
\(n\) terms.