Skip to main content
Logo image

Active Calculus 1st Ed

Activity 6.5.3.
Determine whether each of the following improper integrals converges or diverges. For each integral that converges, find its exact value.
(a)
\(\int_1^{\infty} \frac{1}{x^2} \, dx\)
(b)
\(\int_0^{\infty} e^{-x/4} \, dx\)
(c)
\(\int_2^{\infty} \frac{9}{(x+5)^{2/3}} \, dx\)
(d)
\(\int_4^{\infty} \frac{3}{(x+2)^{5/4}} \, dx\)
(e)
\(\int_0^{\infty} x e^{-x/4} \, dx\)
(f)
\(\int_1^{\infty} \frac{1}{x^p} \, dx\text{,}\) where \(p\) is a positive real number