Skip to main content
Logo image

Active Calculus 2nd Ed

Activity 5.1.4.
Suppose that \(g\) is given by the graph at left in Figure 5.1.6 and that \(A\) is the corresponding integral function defined by \(A(x) = \int_1^x g(t) \, dt\text{.}\)
Figure 5.1.6. At left, the graph of \(y = g(t)\text{;}\) at right, axes for plotting \(y = A(x)\text{,}\) where \(A\) is defined by the formula \(A(x) = \int_1^x g(t) \ dt\text{.}\)
(a)
On what interval(s) is \(A\) an increasing function? On what intervals is \(A\) decreasing? Why?
(b)
On what interval(s) do you think \(A\) is concave up? concave down? Why?
(c)
At what point(s) does \(A\) have a relative minimum? a relative maximum?
(d)
Use the given information to determine the exact values of \(A(0)\text{,}\) \(A(1)\text{,}\) \(A(2)\text{,}\) \(A(3)\text{,}\) \(A(4)\text{,}\) \(A(5)\text{,}\) and \(A(6)\text{.}\)
(e)
Based on your responses to all of the preceding questions, sketch a complete and accurate graph of \(y = A(x)\) on the axes provided, being sure to indicate the behavior of \(A\) for \(x \lt 0\) and \(x \gt 6\text{.}\)
(f)
How does the graph of \(B\) compare to \(A\) if \(B\) is instead defined by \(B(x) = \int_0^x g(t) \, dt\text{?}\)