Skip to main content
Contents Index
Dark Mode Prev Up Next
\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 3.2.2 .
Evaluate each of the following limits. If you use L’Hôpital’s Rule, indicate where it was used, and be certain the limit is indeterminate before you apply it.
(a)
\(\displaystyle \lim_{x \to 0} \frac{\ln(1 + x)}{x}\)
(b)
\(\displaystyle \lim_{x \to \pi} \frac{\cos(x)}{x}\)
(c)
\(\displaystyle \lim_{x \to 1} \frac{2 \ln(x)}{1-e^{x-1}}\)
(d)
\(\displaystyle \lim_{x \to 0} \frac{\sin(x) - x}{\cos(2x)-1}\)