Skip to main content
Logo image

Active Prelude to Calculus

Preview Activity 1.4.1.
(a)
Let \(y = f(x) = 7 - 3x\text{.}\) Determine \(AV_{[-3,-1]}\text{,}\) \(AV_{[2,5]}\text{,}\) and \(AV_{[4,10]}\) for the function \(f\text{.}\)
(b)
Let \(y = g(x)\) be given by the data in the following table.
\(x\) \(-5\) \(-4\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\)
\(g(x)\) \(-2.75\) \(-2.25\) \(-1.75\) \(-1.25\) \(-0.75\) \(-0.25\) \(0.25\) \(0.75\) \(1.25\) \(1.75\) \(2.25\)
Determine \(AV_{[-5,-2]}\text{,}\) \(AV_{[-1,1]}\text{,}\) and \(AV_{[0,4]}\) for the function \(g\text{.}\)
(c)
Consider the function \(y = h(x)\) defined by the graph in the following figure.
Determine \(AV_{[-5,-2]}\text{,}\) \(AV_{[-1,1]}\text{,}\) and \(AV_{[0,4]}\) for the function \(h\text{.}\)
(d)
What do all three examples above have in common? How do they differ?
(e)
For the function \(y = f(x) = 7 - 3x\) from (a), find the simplest expression you can for
\begin{equation*} AV_{[a,b]} = \frac{f(b)-f(a)}{b-a} \end{equation*}
where \(a \ne b\text{.}\)