Active Calculus – Multivariable Draft Table of Contents

  • Chapter 9 Precalculus of Multivariable Functions
    • 9.1 Why Multivariable?
    • 9.2 Three Dimensional Space
    • 9.3 Vectors
    • 9.4 The Dot Product
    • 9.5 The Cross Product
    • 9.6 Lines and Planes in Space
    • 9.7 Common Graphs in Two and Three Dimensions
    • 9.8 Polar, Cylindrical, and Spherical Coordinates
  • Chapter 10 Vector Valued Functions of One Variable
    • 10.1 Vector-Valued Functions of One Variable
    • 10.2 Calculus of Vector-Valued Functions of One Variable
    • 10.3 Arc Length
    • 10.4 The TNB Frame
    • 10.5 Splitting the Acceleration Vector
    • 10.6 Curvature
  • Chapter 11 Derivatives of Multivariable Functions
    • 11.1 Functions of Several Variables
    • 11.2 Limits
    • 11.3 First-Order Partial Derivatives
    • 11.4 Second-Order Partial Derivatives
    • 11.5 Linearization: Tangent Planes and Differentials
    • 11.6 The Chain Rule
    • 11.7 Directional Derivatives and the Gradient
    • 11.8 Optimization
    • 11.9 Constrained Optimization: Lagrange Multipliers
  • Chapter 12 Multiple Integrals
    • 12.1 Double Riemann Sums and Double Integrals over Rectangles
    • 12.2 Iterated Integrals
    • 12.3 Double Integrals over General Regions
    • 12.4 Applications of Double Integrals
    • 12.5 Double Integrals in Polar Coordinates
    • 12.6 Surfaces Defined Parametrically and Surface Area
    • 12.7 Triple Integrals
    • 12.8 Triple Integrals in Cylindrical and Spherical Coordinates
    • 12.9 Change of Variables
  • Chapter 13 Vector Calculus
    • 13.1 Vector Fields
    • 13.2 The Idea of a Line Integral
    • 13.3 Using Parametrizations to Calculate Line Integrals
    • 13.4 Path-Independent Vector Fields and the Fundamental Theorem of Calculus for Line Integrals
    • 13.5 Line Integrals of Scalar Functions
    • 13.6 The Divergence of a Vector Field
    • 13.7 The Curl of a Vector Field
    • 13.8 Green’s Theorem
    • 13.9 Flux Integrals
    • 13.10 Surface Integrals of Scalar Valued Functions
    • 13.11 Stokes’ Theorem
    • 13.12 The Divergence Theorem