Motivating Questions
- What is a double Riemann sum?
- How is the double integral of a continuous function \(f = f(x,y)\) defined?
- What are two things the double integral of a function can tell us?
\(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | |
\(1\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(2\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(3\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(4\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(5\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(6\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(7\) | \(0\) | \(\sqrt{3}\) | \(2\) | \(\sqrt{3}\) | \(0\) |
\(x = 3\) | \(x = 3.2\) | \(x = 3.4\) | |
\(y = 4\) | 7 | 9 | 12 |
\(y = 4.4\) | 5 | 7 | 9 |
\(y = 4.8\) | 3 | 5 | 18 |
\(v \backslash T\) | \(-20\) | \(-15\) | \(-10\) | \(-5\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) |
\(5\) | \(-34\) | \(-28\) | \(-22\) | \(-16\) | \(-11\) | \(-5\) | \(1\) | \(7\) | \(13\) |
\(10\) | \(-41\) | \(-35\) | \(-28\) | \(-22\) | \(-16\) | \(-10\) | \(-4\) | \(3\) | \(9\) |
\(15\) | \(-45\) | \(-39\) | \(-32\) | \(-26\) | \(-19\) | \(-13\) | \(-7\) | \(0\) | \(6\) |
\(20\) | \(-48\) | \(-42\) | \(-35\) | \(-29\) | \(-22\) | \(-15\) | \(-9\) | \(-2\) | \(4\) |
\(25\) | \(-51\) | \(-44\) | \(-37\) | \(-31\) | \(-24\) | \(-17\) | \(-11\) | \(-4\) | \(3\) |
\(30\) | \(-53\) | \(-46\) | \(-39\) | \(-33\) | \(-26\) | \(-19\) | \(-12\) | \(-5\) | \(1\) |
\(35\) | \(-55\) | \(-48\) | \(-41\) | \(-34\) | \(-27\) | \(-21\) | \(-14\) | \(-7\) | \(0\) |